Symbols Reference
Here are lists of symbols that are available for TEXDraw by default.
Note: This documentation is powered by MathJax. Some characters will not be displayed as it’s unsupported by MathJax, but that shouldn’t affect TEXDraw in anyway.
Note: TEXDraw supports automatic code conversion from unicode symbols to LaTeX from v5.6, so you can just copy & paste the unicode symbol if you prefer that.
Legends:
S
: Symbol in LaTeX
U
: Symbol in Unicode
Greek Letters
S
U
Code
S
U
Code
S
U
Code
S
U
Code
$\rm{A}$
Α
\Alpha
*
$\rm{H}$
Η
\Eta
*
$\rm{N}$
\Nu
*
$\rm{T}$
Τ
\Tau
*
$\rm{B}$
Β
\Beta
*
$\Theta$
Θ
\Theta
$\Xi$
Ξ
\Xi
$\Upsilon$
ϒ
\Upsilon
$\Gamma$
Γ
\Gamma
$\rm{I}$
Ι
\Iota
*
$\rm{O}$
\Omicron
*
$\Phi$
Φ
\Phi
$\Delta$
Δ
\Delta
$\rm{K}$
Κ
\Kappa
*
$\Pi$
Π
\Pi
$\rm{X}$
Ω
\Chi
*
$\rm{E}$
Ε
\Epsilon
*
$\Lambda$
Λ
\Lambda
$\rm{P}$
Ρ
\Rho
*
$\Psi$
Ψ
\Psi
$\rm{Z}$
Ζ
\Zeta
*
$\rm{M}$
\Mu
*
$\Sigma$
Σ
\Sigma
$\Omega$
Ω
\Omega
$\alpha$
α
\alpha
$\eta$
η
\eta
$\nu$
ν
\nu
$\tau$
τ
\tau
$\beta$
β
\beta
$\theta$
θ
\theta
$\xi$
ξ
\xi
$\upsilon$
υ
\upsilon
$\gamma$
γ
\gamma
$\iota$
ι
\iota
$\omicron$
\omicron
*
$\phi$
ϕ
\phi
$\delta$
δ
\delta
$\kappa$
κ
\kappa
$\pi$
π
\pi
$\chi$
χ
\chi
$\rho$
ε
\epsilon
$\lambda$
λ
\lambda
$\rho$
ρ
\rho
$\psi$
ψ
\psi
$\zeta$
ζ
\zeta
$\mu$
μ
\mu
$\sigma$
σ
\sigma
$\omega$
ω
\omega
$\varrho$
\varrho
$\varepsilon$
\varepsilon
$\varkappa$
\varkappa
$\varpi$
\varpi
$\varphi$
φ
\varphi
$\varsigma$
ς
\varsigma
$\vartheta$
\vartheta
Text Mode Symbols
S
U
Code
S
U
Code
S
U
Code
S
U
Code
$$$
$
\$
$|$
ǁ
\|
$#$
\#
$\%$
\%
$\P$
¶
\P
$\S$
§
\S
$\dagger$
†
\dag
$\ddagger$
‡
\ddag
$\textquoteleft$
‘
`
$\textquoteright$
’
'
ø
\o
Ø
\O
ß
\ss
SS
\SS
Æ
\ae
Æ
\AE
S
U
Code
S
U
Code
S
U
Code
_
\_
–
–
\endash
—
—
\emdash
$/$
\slash
$\backslash$
\backslash
$\vert$
\vert
©
©
\copyright
$\circledR$
Ⓡ
\circledR
$\circledS$
Ⓢ
\circledS
™
™
\trademark
$\checkmark$
✓
\checkmark
£
\pounds
$\maltese$
✠
\maltese
¢
¢
\cent
$\ldots$
…
\ldots
$\textasciitilde$
\asciitilde
¿
\questiondown
¡
\exclamdown
“
``
”
''
$\cdot$
·
\cdot
‰
‰
\permil
$\yen$
¥
\yen
S
U
Code
S
U
Code
S
U
Code
$\infty$
∞
\infty
$\prime$
\prime
$\backprime$
\backprime
$\ell$
ℓ
\ell
$\imath$
\imath
$\jmath$
\jmath
$\emptyset$
\emptyset
$\partial$
\partial
$\varnothing$
\varnothing
þ
\thorn
\Thorn
$\mho$
\mho
$\eth$
\eth
\dh
\openo
$\beth$
ℶ
\beth
$\gimel$
ℷ
\gimel
$\daleth$
ℸ
\daleth
$\digamma$
\digamma
$\wp$
\wp
$\Re$
\Re
$\Im$
\Im
$\aleph$
ℵ
\aleph
$\Finv$
ⅎ
\Finv
$\hslash$
ℏ
\hslash
$\hbar$
\hbar
$\Game$
\Game
$\complement$
\complement
\brokenvert
\inve
$\forall$
\forall
$\exists$
\exists
$\nexists$
\nexists
$\surd$
\surd
$\nabla$
\nabla
$\amalg$
\amalg
$\diagup$
\diagup
$\diagdown$
\diagdown
$\neg$
\neg
$\bowtie$
\bowtie
$\lnot$
\lnot
\rnot
Astronomical Symbols
Due to limitation in MathJax we only show the unicode part of these symbols
U
Code
U
Code
U
Code
☊
\ascnode
☋
\descnode
☉
\sun
☿
\mercury
♀
\venus
♁
\earth
♂
\mars
♃
\jupiter
♄
\saturn
⛢
\uranus
♆
\neptune
♇
\pluto
♈︎
\aries
♉︎
\taurus
♊︎
\gemini
♋︎
\cancer
♌︎
\leo
♍︎
\virgo
♎︎
\libra
♏︎
\scorpio
♐︎
\sagittarius
♑︎
\capricornus
♒︎
\aquarius
♓︎
\pisces
♂
\male
♀
\female
☌
\conjunction
☍
\opposition
Geometrical Symbols
S
Code
S
Code
S
Code
$\blacktriangle$
\blacktriangle
$\blacktriangledown$
\blacktriangledown
$\blacktriangleleft$
\blacktriangleleft
$\bigtriangleup$
\bigtriangleup
$\bigtriangledown$
\bigtriangledown
$\blacktriangleright$
\blacktriangleright
$\circ$
\circ
$\bullet$
\bullet
$\bigcirc$
\bigcirc
$\vartriangle$
\vartriangle
$\triangledown$
\triangledown
$\bigstar$
\bigstar
$\triangle$
\triangle
$\square$
\square
$\star$
\star
$\blacksquare$
\blacksquare
$\lozenge$
\lozenge
$\blacklozenge$
\blacklozenge
$\pentagon$
\pentagon
$\hexagon$
\hexagon
$\varhexagon$
\varhexagon
$\octagon$
\octagon
$\Leftcircle$
\Leftcircle
$\Rightcircle$
\Rightcircle
$\ataribox$
\ataribox
$\LEFTCIRCLE$
\LEFTCIRCLE
$\RIGHTCIRCLE$
\RIGHTCIRCLE
$\clubsuit$
\clubsuit
$\spadesuit$
\spadesuit
$\diamondsuit$
\diamondsuit
$\smiley$
\smiley
$\frownie$
\frownie
$\heartsuit$
\heartsuit
$\leftmoon$
\leftmoon
$\rightmoon$
\rightmoon
$\blacksmiley$
\blacksmiley
Geometrical Units
S
Code
S
Code
S
Code
$\angle$
\angle
$\measuredangle$
\measuredangle
$\varangle$
\varangle
$\sphericalangle$
\sphericalangle
$\diameter$
\diameter
$\invdiameter$
\invdiameter
$\leftturn$
\leftturn
$\rightturn$
\rightturn
$\pentastar$
\pentastar
$\hexstar$
\hexstar
$\varhexstar$
\varhexstar
$\davidsstar$
\davidsstar
$\flat$
\flat
$\natural$
\natural
$\sharp$
\sharp
$\eighthnote$
\eighthnote
$\quarternote$
\quarternote
$\halfnote$
\halfnote
$\fullnote$
\fullnote
$\twonotes$
\twonotes
$\HF$
\HF
$\photon$
\photon
$\vernal$
\vernal
$\VHF$
\VHF
$\gluon$
\gluon
\lightning
\lightning
\currency
\currency
$\comment$
\comment
$\maltese$
\maltese
$\kreuz$
\kreuz
$\clock$
\clock
$\phone$
\phone
$\pointer$
\pointer
$\bell$
\bell
$\logof$
\logof
$\recorder$
\recorder
$\checked$
\checked
$\checkmark$
\checkmark
$\smile$
\smile
$\smallsmile$
\smallsmile
$\smallfrown$
\smallfrown
$\frown$
\frown
Geometrical Operators
S
Code
S
Code
S
Code
$\oplus$
\oplus
$\ominus$
\ominus
$\otimes$
\otimes
$\oast$
\oast
$\olessthan$
\olessthan
$\ogreaterthan$
\ogreaterthan
$\ovee$
\ovee
$\owedge$
\owedge
$\odot$
\odot
$\obar$
\obar
$\oslash$
\oslash
$\obslash$
\obslash
$\varoplus$
\varoplus
$\varominus$
\varominus
$\varotimes$
\varotimes
$\varoast$
\varoast
$\varolessthan$
\varolessthan
$\varogreaterthan$
\varogreaterthan
$\varovee$
\varovee
$\varowedge$
\varowedge
$\varodot$
\varodot
$\varobar$
\varobar
$\varoslash$
\varoslash
$\varobslash$
\varobslash
$\boxplus$
\boxplus
$\boxminus$
\boxminus
$\boxtimes$
\boxtimes
$\boxast$
\boxast
$\boxdot$
\boxdot
$\boxbar$
\boxbar
$\boxslash$
\boxslash
$\boxbslash$
\boxbslash
$\boxcircle$
\boxcircle
$\boxbox$
\boxbox
$\boxempty$
\boxempty
$\boxarrowup$
\boxarrowup
$\boxarrowdown$
\boxarrowdown
$\boxarrowleft$
\boxarrowleft
$\boxarrowright$
\boxarrowright
$\Yup$
\Yup
$\Ydown$
\Ydown
$\Yleft$
\Yleft
$\Yright$
\Yright
$\pointup$
\pointup
%$\pointdown$
\pointdown
%$\pointleft$
\pointleft
Binary Operators
Symbols that “just work” in math mode:
$+$ $-$ $=$ $=$ $!$ $/$ $($ $)$ $[$ $]$ $<$ $>$ $|$ $’$ $:$ $*$
S
Code
S
Code
S
Code
$+$
\plus
$-$
\minus
$\times$
\times
$\ast$
\ast
$\div$
\div
$\cdot$
\cdot
$\pm$
\pm
$\mp$
\mp
$\cup$
\cup
$\cap$
\cap
$\sqcup$
\sqcup
$\sqcap$
\sqcap
$\uplus$
\uplus
$\nplus$
\nplus
$\vee$
\vee
$\wedge$
\wedge
$\dotplus$
\dotplus
$\intercal$
\intercal
$\minuso$
\minuso
$\baro$
\baro
$\doublecap$
\doublecap
$\doublecup$
\doublecup
$\curlyvee$
\curlyvee
$\curlywedge$
\curlywedge
$\leftthreetimes$
\leftthreetimes
$\rightthreetimes$
\rightthreetimes
$\ltimes$
\ltimes
$\rtimes$
\rtimes
$\barwedge$
\barwedge
$\veebar$
\veebar
$\doublebarwedge$
\doublebarwedge
$\moo$
\moo
$\vartimes$
\vartimes
$\varcurlyvee$
\varcurlyvee
$\varcurlywedge$
\varcurlywedge
$\merge$
\merge
$\binampersand$
\binampersand
$\bindnasrepma$
\bindnasrepma
$\wr$
\wr
Binary Comparisons
S
U
Code
S
U
Code
S
U
Code
$\equiv$
≡
\equiv
$\doteq$
\doteq
$\triangleq$
\triangleq
$\doteqdot$
≑
\doteqdot
$\risingdotseq$
≓
\risingdotseq
$\fallingdotseq$
≒
\fallingdotseq
$\asymp$
≍
\asymp
$\propto$
∝
\propto
$\bumpeq$
\bumpeq
$\Bumpeq$
≎
\Bumpeq
$\eqcirc$
≖
\eqcirc
$\circeq$
≗
\circeq
$\sim$
\sim
$\approx$
\approx
$\thicksim$
\thicksim
$\thickapprox$
\thickapprox
$\simeq$
\simeq
$\eqsim$
\eqsim
$\backsim$
∽
\backsim
$\backsimeq$
\backsimeq
$\approxeq$
\approxeq
$\Vvdash$
⊪
\Vvdash
$\vdash$
⊢
\vdash
$\dashv$
⊣
\dashv
$\in$
𝟄
\in
$\Vdash$
⊩
\Vdash
$\vDash$
\vDash
$\ni$
∋
\ni
\inplus
\niplus
$\therefore$
∴
\therefore
$\because$
∵
\because
\interleave
$\varpropto$
\varpropto
$\mid$
∣
\mid
$\parallel$
∥
\parallel
$\shortmid$
\shortmid
$\shortparallel$
\shortparallel
$\neq$
≠
\neq
$\pitchfork$
⋔
\pitchfork
$\between$
≬
\between
Binary Relations
S
U
Code
S
U
Code
$<$
<
\less
$>$
>
\gtr
$\leq$
≤
\leq
$\geq$
≥
\geq
$\leqslant$
⩽
\leqslant
$\geqslant$
⩾
\geqslant
$\leqq$
≦
\leqq
$\geqq$
≧
\geqq
$\lesssim$
≲
\lesssim
$\gtrsim$
≳
\gtrsim
$\lessapprox$
⪅
\lessapprox
$\gtrapprox$
⪆
\gtrapprox
$\eqslantless$
⪕
\eqslantless
$\eqslantgtr$
⪖
\eqslantgtr
$\lessgtr$
≶
\lessgtr
$\gtrless$
≷
\gtrless
$\lesseqgtr$
⋚
\lesseqgtr
$\gtreqless$
⋛
\gtreqless
$\lesseqqgtr$
⪋
\lesseqqgtr
$\gtreqqless$
⪌
\gtreqqless
$\ll$
≪
\ll
$\gg$
≫
\gg
$\lll$
\lll
$\ggg$
\ggg
$\lessdot$
⋖
\lessdot
$\gtrdot$
⋗
\gtrdot
$\prec$
≺
\prec
$\succ$
≻
\succ
$\preceq$
⪯
\preceq
$\succeq$
⪰
\succeq
$\precsim$
\precsim
$\succsim$
\succsim
$\precapprox$
⪷
\precapprox
$\succapprox$
⪸
\succapprox
$\preccurlyeq$
≼
\preccurlyeq
$\succcurlyeq$
≽
\succcurlyeq
$\curlyeqprec$
⋞
\curlyeqprec
$\curlyeqsucc$
⋟
\curlyeqsucc
$\subset$
⊂
\subset
$\supset$
⊃
\supset
$\subseteq$
⊆
\subseteq
$\supseteq$
⊇
\supseteq
$\sqsubset$
⊏
\sqsubset
$\sqsupset$
⊐
\sqsupset
$\sqsubseteq$
⊑
\sqsubseteq
$\sqsupseteq$
⊒
\sqsupseteq
⪿
\subsetplus
⫀
\supsetplus
\subsetpluseq
\supsetpluseq
$\Subset$
⋐
\Subset
$\Supset$
⋑
\Supset
$\Cap$
⋒
\Cap
$\Cup$
⋓
\Cup
$\subseteqq$
⫅
\subseteqq
$\supseteqq$
⫆
\supseteqq
$\triangleleft$
◁
\triangleleft
$\triangleright$
▷
\triangleright
$\vartriangleleft$
⊲
\vartriangleleft
$\vartriangleright$
⊳
\vartriangleright
$\trianglelefteq$
⊴
\trianglelefteq
$\trianglerighteq$
⊵
\trianglerighteq
\trianglelefteqslant
\trianglerighteqslant
$\blacktriangleleft$
◀
\blacktriangleleft
$\blacktriangleright$
▶
\blacktriangleright
\leftslice
\rightslice
Negated Relations
S
U
Code
S
U
Code
$\nless$
\nless
$\ngtr$
\ngtr
$\nleq$
\nleq
$\ngeq$
\ngeq
$\nleqslant$
\nleqslant
$\ngeqslant$
\ngeqslant
$\nleqq$
\nleqq
$\ngeqq$
\ngeqq
$\lnsim$
⋦
\lnsim
$\gnsim$
⋧
\gnsim
$\lnapprox$
⪉
\lnapprox
$\gnapprox$
⪊
\gnapprox
$\lneq$
\lneq
$\gneq$
\gneq
$\lneqq$
\lneqq
$\gneqq$
\gneqq
$\nprec$
\nprec
$\nsucc$
\nsucc
$\npreceq$
\npreceq
$\nsucceq$
\nsucceq
$\precnsim$
⋨
\precnsim
$\succnsim$
⋩
\succnsim
$\precnapprox$
⪹
\precnapprox
$\succnapprox$
⪺
\succnapprox
$\precneqq$
⪵
\precneqq
$\succneqq$
⪶
\succneqq
$\curlyeqprec$
\curlyeqprec
$\curlyeqsucc$
\curlyeqsucc
$\nsubseteq$
\nsubseteq
$\nsupseteq$
\nsupseteq
$\subsetneq$
\subsetneq
$\supsetneq$
\supsetneq
$\nsubseteqq$
\nsubseteqq
$\nsupseteqq$
\nsupseteqq
$\varsubsetneq$
\varsubsetneq
$\varsupsetneq$
\varsupsetneq
$\subsetneqq$
\subsetneqq
$\supsetneqq$
\supsetneqq
$\varsubsetneqq$
\varsubsetneqq
$\varsupsetneqq$
\varsupsetneqq
$\ntriangleleft$
⋪
\ntriangleleft
$\ntriangleright$
⋫
\ntriangleright
$\ntrianglelefteq$
⋬
\ntrianglelefteq
$\ntrianglerighteq$
⋭
\ntrianglerighteq
\ntrianglelefteqslant
\ntrianglerighteqslant
$\nsim$
\nsim
$\ncong$
\ncong
$\nvdash$
⊬
\nvdash
$\nvDash$
⊭
\nvDash
$\nVdash$
⊮
\nVdash
$\nVDash$
⊯
\nVDash
$\nmid$
∤
\nmid
$\nparallel$
∦
\nparallel
$\nshortmid$
\nshortmid
$\nshortparallel$
\nshortparallel
Arrows
S
U
Code
S
U
Code
$\uparrow$
↑
\uparrow
$\Uparrow$
⇑
\Uparrow
$\downarrow$
↓
\downarrow
$\Downarrow$
⇓
\Downarrow
$\leftarrow$
←
\leftarrow
$\Leftarrow$
⇐
\Leftarrow
$\rightarrow$
→
\rightarrow
$\Rightarrow$
⇒
\Rightarrow
$\updownarrow$
↕
\updownarrow
$\Updownarrow$
⇕
\Updownarrow
$\leftrightarrow$
↔
\leftrightarrow
$\Leftrightarrow$
⇔
\Leftrightarrow
$\leftharpoonup$
↼
\leftharpoonup
$\leftharpoondown$
↽
\leftharpoondown
$\rightharpoonup$
⇀
\rightharpoonup
$\rightharpoondown$
⇁
\rightharpoondown
$\upharpoonleft$
↿
\upharpoonleft
$\upharpoonright$
↾
\upharpoonright
$\downharpoonleft$
⇃
\downharpoonleft
$\downharpoonright$
⇂
\downharpoonright
$\nearrow$
↗
\nearrow
$\searrow$
↘
\searrow
$\swarrow$
↙
\swarrow
$\nwarrow$
↖
\nwarrow
\nnearrow
\ssearrow
\sswarrow
\nnwarrow
$\curvearrowleft$
↶
\curvearrowleft
$\curvearrowright$
↷
\curvearrowright
$\circlearrowleft$
↺
\circlearrowleft
$\circlearrowright$
↻
\circlearrowright
\shortuparrow
\shortdownarrow
\shortleftarrow
\shortrightarrow
$\upuparrows$
⇈
\upuparrows
$\downdownarrows$
⇊
\downdownarrows
$\leftleftarrows$
⇇
\leftleftarrows
$\rightrightarrows$
⇉
\rightrightarrows
$\leftrightharpoons$
⇋
\leftrightharpoons
$\rightleftharpoons$
⇌
\rightleftharpoons
$\leftrightarrows$
⇆
\leftrightarrows
$\rightleftarrows$
⇄
\rightleftarrows
$\nleftarrow$
↚
\nleftarrow
$\nLeftarrow$
⇍
\nLeftarrow
$\nrightarrow$
↛
\nrightarrow
$\nRightarrow$
⇏
\nRightarrow
$\nleftrightarrow$
↮
\nleftrightarrow
$\nLeftrightarrow$
⇎
\nLeftrightarrow
$\multimap$
⊸
\multimap
$\twoheadleftarrow$
↞
\twoheadleftarrow
$\Lleftarrow$
⇚
\Lleftarrow
$\twoheadrightarrow$
↠
\twoheadrightarrow
$\Rrightarrow$
⇛
\Rrightarrow
$\Lsh$
↰
\Lsh
$\looparrowleft$
↫
\looparrowleft
$\Rsh$
↱
\Rsh
$\looparrowright$
↬
\looparrowright
$\leftarrowtail$
↢
\leftarrowtail
$\rightsquigarrow$
⇝
\rightsquigarrow
$\rightarrowtail$
↣
\rightarrowtail
$\leftrightsquigarrow$
↭
\leftrightsquigarrow
\leftarrowtriangle
\rightarrowtriangle
\leftrightarrowtriangle
\leftrightarroweq
Delimiters
S
Code
S
Code
$(\big(\Big(\bigg(\Bigg($
(
$\Bigg)\bigg)\Big)\big))$
)
$\Bigg[\bigg[\Big[\big[[$
[
$]\big]\Big]\bigg]\Bigg]$
]
$\lbrace\big\lbrace\Big\lbrace\bigg\lbrace\Bigg\lbrace$
\lbrace
$\Bigg\rbrace\bigg\rbrace\Big\rbrace\big\rbrace\rbrace$
\rbrace
$\Bigg\langle\bigg\langle\Big\langle\big\langle\langle$
\langle
$\rangle\big\rangle\Big\rangle\bigg\rangle\Bigg\rangle$
\langle
$\lceil\big\lceil\Big\lceil\bigg\lceil\Bigg\lceil$
\lceil
$\Bigg\rceil\bigg\rceil\Big\rceil\big\rceil\rceil$
\rceil
$\Bigg\lfloor\bigg\lfloor\Big\lfloor\big\lfloor\lfloor$
\lfloor
$\rfloor\big\rfloor\Big\rfloor\bigg\rfloor\Bigg\rfloor$
\rfloor
\llbracket
\rrbracket
$\Bigg\vert\bigg\vert\Big\vert\big\vert\vert$
\vert
$\Vert\big\Vert\Big\Vert\bigg\Vert\Bigg\Vert$
\Vert
$\uparrow\big\uparrow\Big\uparrow\bigg\uparrow\Bigg\uparrow$
\uparrow
$\Bigg\Uparrow\bigg\Uparrow\Big\Uparrow\big\Uparrow\Uparrow$
\Uparrow
$\Bigg\downarrow\bigg\downarrow\Big\downarrow\big\downarrow\downarrow$
\downarrow
$\Downarrow\big\Downarrow\Big\Downarrow\bigg\Downarrow\Bigg\Downarrow$
\Downarrow
$\updownarrow\big\updownarrow\Big\updownarrow\bigg\updownarrow\Bigg\updownarrow$
\updownarrow
$\Bigg\Updownarrow\bigg\Updownarrow\Big\Updownarrow\big\Updownarrow\Updownarrow$
\Updownarrow
$\Bigg\lmoustache\bigg\lmoustache\Big\lmoustache\big\lmoustache\lmoustache$
\lmoustache
$\rmoustache\big\rmoustache\Big\rmoustache\bigg\rmoustache\Bigg\rmoustache$
\rmoustache
$\lgroup\big\lgroup\Big\lgroup\bigg\lgroup\Bigg\lgroup$
\lgroup
$\Bigg\rgroup\bigg\rgroup\Big\rgroup\big\rgroup\rgroup$
\rgroup
Large Operators
S
U
Code
$\int\displaystyle\int$
∫
\int
\varint
$\iint\displaystyle\iint$
∬
\iint
$\iiint\displaystyle\iiint$
∭
\iiint
$\oint\displaystyle\oint$
∮
\oint
\varoint
$\oiint\displaystyle\oiint$
\oiint
$\sum\displaystyle\sum$
\sum
$\prod\displaystyle\prod$
\prod
$\coprod\displaystyle\coprod$
\coprod
$\bigcup\displaystyle\bigcup$
\bigcup
$\bigcap\displaystyle\bigcap$
\bigcap
$\bigsqcup\displaystyle\bigsqcup$
\bigsqcup
\bigsqcap
$\bigoplus\displaystyle\bigoplus$
\bigoplus
$\bigotimes\displaystyle\bigotimes$
\bigotimes
\bigparallel
\biginterleave
$\bigtriangleup\displaystyle\bigtriangleup$
\bigtriangleup
$\bigtriangledown\displaystyle\bigtriangledown$
\bigtriangledown
\bigbox
Functions
Built-in defined functions:
$\cos$ $\bullet$ $\sec$ $\bullet$ $\arccos$ $\bullet$ $\cosh$ $\bullet$
$\coth$ $\bullet$ $\sin$ $\bullet$ $\csc$ $\bullet$ $\arcsin$ $\bullet$
$\sinh$ $\bullet$ $\tan$ $\bullet$ $\cot$ $\bullet$ $\arctan$ $\bullet$
$\tanh$ $\arg$ $\bullet$ $\dim$ $\bullet$ $\hom$ $\bullet$ $\lg$ $\bullet$
$\max$ $\bullet$ $\sup$ $\bullet$ $\deg$ $\bullet$ $\exp$ $\bullet$
$\inf$ $\bullet$ $\lim$ $\bullet$ $\min$ $\bullet$ $\det$ $\bullet$
$\gcd$ $\bullet$ $\ker$ $\bullet$ $\sup$
Other functions can be written using \operatorname{name}
such as in $y = \operatorname{f}(x)$ be written as $y = \operatorname{f}(x)$